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Heat transfer in plane Couette flow of a rarefied gas 
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S U M M A R Y  
In this paper Shen's method is used for solving the problem of heat transfer in plane Couette flow of a rarefied gas. An 
approximate distribution function is assumed and the appropriate transfer equations, which exhibit the proper 
collision effect between the molecules, are used to determine the temperature jumps at the plates. 

1. Introduction 

The problem of heat transfer in a gas flow between parallel plates using the linearized Boltzmann 
equation with the BGK-model is not a new one. Recently, Bhatnagar and Srivastava [1], 
studied the problem of heat transfer in a plane Couette flow by using the method of moments 
for the half range distributions. They determined approximate solutions of the heat flux vector 
and the temperature jumps at the two plates. 

Previously, Shen [2] proposed a relaxation typ~ procedure for the transition regime of 
rarefied gas flows, which provides a complete solution valid for all Knudsen numbers. He 
made use of Lees' [3] two-stream Maxwellian in his assumed form of the distribution function. 
Later on, Sarin [4] has also used Shen's approach in a slightly generalized form, for solving 
the problem of Couette flow. 

In the present paper we use Shen's approach to study the problem of heat transfer in plane 
Couette flow. In this procedure we make use of the appropriate transfer equations so as to 
calculate the unknown functions introduced in the distribution function. Numerical results 
have then been obtained for the heat flux vector and temperature jumps at the two plates. 

2. Analysis 

Consider a gas between two parallel plates. As the problem is one of heat transfer, the density 
variation is neglected. The two plates, y = 0 and y = h, are maintained at constant temperatures 
T o and Th respectively and the upper plate is moving with a relative speed U in the x-direction. 
We assume a steady state in which all the quantities depend only on the y-coordinate measured 
perpendicular to the plates. Denoting the relative change in the distribution function by q5 and 
the dimensionless molecular velocity vector (cf. [1]) by (vx, vy, Vz) and its length by v, we 
introduce the function r y), in the BGK-model of the Boltzmann equation, defined as 

f f O(vy, y) = (v 2 -3 )  exp ( -  v~ - v~) ~)dvxdv~ , 
V x :  - - ~  ~ z =  - -  oO 

which satisfies the following integro-differential equation (el [1]): 

+ f = 6~ ~ ~,(vy, y)exp(-v2)dvy,  (1) 
wy - - 0 0  

where 2 is the inverse of the mean free path of the gas. 
The boundary conditions to be satisfied by ~ (vy, y) are: 
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[ 3Th ~] (To~ ~* 
~b +(vr ,0 )=0 ,  O-(vr, h ) = n  U 2 +  2 T  O \ThJ = ~kw' (2) 

where 0 + and O- are the half-range distribution functions for vr > 0 and v r < 0 respectively. 
Following [2], we assume that the approximate distribution function which exhibits the 

proper collision effect has the form 

exp[ 
vy ~y A J 

with ~' indicating the distribution prescribed at the position (y' = 0 and y' = h) of the molecules 
having velocity v r and where the choice of distribution 0o is rather arbitrary. For simplicity 
we choose the approximate distribution function to be of the form 

~b(v,, y) { 1 - e x p [ - i ~ y / v r ] }  ~ " + = v , X ,  (y), for vr< 0 (4a) 
n = 0  

0(v, ,y)=0,~exp [_  2 ( y - h ! ]  + { l - e x p  [ - 2 ( Y - h ) l t  ~ v~X2(y),  for v , > 0  (4b) 
Vy A Vy AJ n=0 

where 0~ is defined in equation (2) and X~ (y) are unknown functions of y. Taking n=0,  
the functions X~ (y) and Xo (y) are found by using the appropriate transfer equations. Once 
these quantities are determined, the temperature jumps and the heat flux vector can be cal- 
culated. Making use of the two transfer equations for 1 and vx, these turn out to be 

(vy) = - qy = constant (5) 

(vy z ) = - qr (2y) + C.  (6) 

Evaluating (vy) and (vyz), we get 

(vr) = _ 1 [ tPwJ l {2 (y -h ) }+Xo(Y) ( �89189  (7) 

1= 
w J a { 2 ( y - h ) } + X o t Y ) ~ - J 2 { 2 ( y - h ) }  + - J2{y2} , (8) g ~ 

where the auxiliary function J,(e) is given as 

f J,(a) = exp - x  2 - x"dx ,  (n = 0, 1, 2, ...). (9) 
o 

From equations (5)-(8), we get the final equations 

- X  o (y ) [ �89  X~ (Y) [ �89  = n F 1 (10) 

Xo(y  - A  2 + X g ( y )  - B 2  =n~F2 (11) 

with 

and 

1 ~0wA2 1 ~k~A 1 F 2 = - q r ( y 2 ) + C  rc ~ Fi = qy  + 7---~ , . - -  - -  (12a, b) 

A . = J . { 2 ( y ' h ) } ,  B~=J~{2y}. (12c) 

Before determining the unknown functions Xff (y), we first of all determine the constants qr 
and C which occur in equations (10) and (11). 

In this procedure the boundary conditions are automatically satisfied and qy and C are 
determined as eigenvalues and Xo -+ (y) as eigenfunctions. Putting y = 0 and y = h, we arrive at 
the following results: 

* Bhatnagar and Srivastava [1] did not include the factor (To/Th) ~ in the boundary condition at the upper plate. 
This has been incorporated by Srivastava and Saraf [6]. 
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2 - a 2 q -  a -ax) 
(13) 

where 

a, = J,(a), b. = 4(0) (lS) 
and 

h = 2h (the inverse of the Knudsen number). 

Solving the eigenfunctions Xff (y) from equations (10) and (11), we have 

X~- (y) = ( 4 - A 2 )  ( n} __  B2) (16) (�89 + \ 4 -  (�89 

and 

X o  (y) = 

( � 8 9  + ( 4  - B2) (�89 

where F 1 and F 2 are given in equation (12). Now the problem is completely solved and we will 
give only the heat flux vector and temperature jumps. 

The dimensionless heat flux vector is 

~ a,-�89 + hi - a2 + b2(�89 
q y =  (18) 

1 

where qkn is the heat flux vector in the free molecular limit. 
The temperature z is given as 

z(y) = ~ -oo' O(G, Y) exp(-v2)dvy 

23~ ~ [ ( 2  {2(Y-h)})+ X ~ ( Y ) ( 2  J~ {2Y})] LOWJo{2(y-h)} + Xo (y) - Jo 

(19) 
From (19) the temperature jumps are 

T(O)- To _ 2 [~9wdo(a)+ Xo (O)~_f jo(: r +X~(0)  - J  o(0) (20) 
To 3 ~  - , 

E + 

where Xg (0) and Xg (h) can be obtained from equations (16) and (17) and ~s w is defined by 
equation (2). The tables for the functions Y. (a) were obtained by Huang [5] by using Gauss- 
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Hermite quadrature. Fig. 1 shows the variation of heat flux vector with inverse Knudsen 
number and in Fig. 2 we have plotted the temperature profile T(y ) /T  o between the two plates 
against y for a= 10, Th/To = 1.4 and U=0.3. Although the approach is slightly cumbersome, 
our plots show fairly good agreement with the results obtained by Bhatnagar and Srivastava [1] 
and Bassinani et al. [7]. 
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Figure 1. The heat flow vs. inverse Knudsen number. 
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Figure 2. The temperature profile between the plates. 
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